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More Than a Match: Balancing Match Quality and Labor Supply via
Allocation Algorithm on Gig Platforms

ABSTRACT

Gig platforms often match demand to supply via allocation algorithms that prioritize
workers who provide high-quality service. Using data from a large on-demand delivery plat-
form that matches shippers with independent drivers, we document how the prioritization
allocation mechanism directs more orders toward high-quality drivers, improving customer
satisfaction and leading to higher hourly earnings for these drivers. To evaluate the welfare
implications of such an allocation algorithm and explore its optimal design, we develop a
structural model that nests quality-based prioritization in a frictional matching environment
with endogenous labor supply. Counterfactual analyses reveal a central trade-off in the de-
sign of allocation algorithms: prioritizing high-quality workers can improve match quality
and customer satisfaction, but also depress earning opportunities for low-quality workers and
discourage their participation, which may shrink total labor supply and ultimately erode plat-
form profitability. Our findings underscore the importance of balancing match quality with
labor supply in the design of allocation algorithms.

Keywords: Allocation Algorithm, Two-Sided Platforms, Labor Supply, Structural Modeling



1 Introduction

The rapid rise of two-sided digital platforms has fundamentally transformed the organi-

zation of work in the gig economy. A central design problem for these platforms is how to

efficiently allocate demand (e.g., ride requests, delivery orders, service tasks) to the supply

(e.g., drivers, freelancers) at scale and in real time. Increasingly, platforms use algorithmic -

often “quality-based” - allocation mechanisms that prioritize workers with stronger historical

performance (e.g., higher ratings, on-time rates, or tenure).

These algorithms can raise average service quality and user satisfaction by matching cus-

tomers with better-performing providers. At the same time, they reshape labor supply in-

centives by distributing earning opportunities for workers. Prioritizing high-quality workers

typically improves consumer outcomes, such as higher acceptance and lower cancellation, but

it may depress earning opportunities for lower-quality or newer workers, discouraging their

participation. Such reduced participation lowers labor supply and thus ultimately undermines

platform profits. We therefore ask: what are the welfare consequences of a quality-based al-

location mechanism? How should the platform balance between consumer satisfaction with

sustaining worker participation when designing the allocation algorithms?

We study these questions in the context of a leading on-demand logistics platform in

China that matches shippers with independent drivers for delivery services. This institutional

setting is well-suited to our questions: drivers apply for the shipping order; the platform al-

locates the order to exactly one applicant; the shipper then chooses to accept or cancel after

viewing the assigned driver’s attributes. Importantly, we observe complete application sets

for each order, allowing us to recover the platform’s allocation rules and the distribution of

opportunities across driver types. Using a learning-to-rank machine learning model trained

on actual assignment outcomes, we show that the platform systematically favors drivers with

stronger performance records (e.g., higher behavioral scores, higher ratings, more completed

orders, longer tenure, and better on-time histories), which is consistent with a quality-based

prioritization rule. Building on this evidence, we classify drivers into two groups: high-score

drivers, who are prioritized by the algorithm, and low-score drivers, who are ranked lower in

the allocation process.

We begin with reduced-form evidence that connects the allocation rule to shipper prefer-

ences and to differential earnings. We find that shippers are significantly more likely to accept
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high-score drivers, indicating that prioritization aligns with demand-side preferences. More-

over, conditional on working in the same hour, high-score drivers earn roughly 15% more

per hour than low-score drivers because they receive more assignments and cover longer dis-

tances within those hours. Together, these facts indicate that prioritizing high-score drivers

improves match quality from the consumer’s perspective while concentrating revenue oppor-

tunities among high-score drivers. They also motivate the central tradeoff in the design of allo-

cation algorithms for platforms: prioritization toward high-score drivers improves consumer

satisfaction but risks discouraging participation by lower-score drivers.

To move from partial correlations to equilibrium implications, we develop and estimate a

structural model of a two-sided market with endogenous labor supply and an explicit algorith-

mic allocation rule. On the demand side, the aggregate shipping demand follows a constant-

elasticity function at the hourly market level. On the supply side, drivers choose whether to

work each hour by comparing expected earnings with their idiosyncratic reservation values.

We allow for two observed driver types: high-score (H-type) and low-score (L-type)—that

enter the allocation rule, and for unobserved heterogeneity in reservation values via latent

groups with distinct intertemporal reservation values. The platform’s allocation rule is mod-

eled as a matching function that maps active supply and demand into total matches while

accommodating market frictions. It is parameterized by a factor that governs how orders are

split between H- and L-type drivers. This structure lets us study how increasing the priority

of H-type drivers in the allocation rule propagates through matching probabilities, expected

earnings, labor supply, and ultimately platform profits and consumer surplus.

Estimation proceeds in three steps. First, we recover demand elasticity from hourly mar-

ket aggregates, using nearby-city prices as an instrument to address potential endogeneity.

Second, we estimate supply-side parameters by maximum likelihood via an EM algorithm,

leveraging observed working histories and drivers’ expected matched earnings to infer the dis-

tribution of reservation values across latent groups. Third, we calibrate time-varying matching

frictions to match observed market throughput. The supply-side estimates reveal substantial

heterogeneity of reservation value across hours and driver groups: high-score drivers are dis-

proportionately represented in groups with stronger outside options; and reservation values

exhibit a U-shaped daily pattern (lowest mid-day, highest overnight), with magnitudes that

differ across groups.

We then conduct counterfactual simulations to quantify the welfare implications of algo-
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rithmic allocation and to characterize optimal design. Removing the platform’s prioritization

toward high-score drivers—i.e., randomly assigning orders among applying drivers—reduces

platform commission revenue by about 3.5% and redistributes surplus across driver types: H-

types lose surplus by 2.37% as their assignment advantage shrinks, while L-types gain around

2% from more frequent assignment. Consumers also lose because of lower average match

quality.

Next, we vary the priority accorded to high-score drivers and trace platform performance.

Platform revenue is hump-shaped in the degree of prioritization. At low levels, increasing

high-score drivers’ priority improves match quality and shipper acceptance with limited par-

ticipation losses from low-score drivers, raising platform revenue. Beyond an intermediate

point, however, further increases in priority disproportionately discourage L-type drivers’ par-

ticipation, reducing effective supply and offsetting gains from improved shipper acceptance.

Profits therefore rise and then fall. This interior optimum formalizes the idea that “more pri-

oritization” is not always better: platforms must balance quality gains against participation

responses when designing allocation rules.

Literature Review

Our research connects to multiple strands of literature on labor supply in the gig economy,

ride-hailing platforms, and the broad implications of algorithms on various markets.

First, our paper is related to previous works on the labor supply in the gig economy,

where workers autonomously and flexibly choose working schedules. Several studies have

examined the gig workers’ labor supply decisions and their welfare gains from the gig plat-

forms (Chen et al., 2019; Stanton and Thomas, 2024). Other research highlights how platforms

influence workers’ incentives through monetary rewards (Chen et al., 2020; Allon et al., 2023;

Chen et al., 2022), and non-monetary nudges, such as rating (Xu et al., 2023) and gamification

(Ai et al., 2023). We extend this literature by studying how the platform leverages the alloca-

tion algorithm to manipulate workers’ earning opportunities and thus labor supply incentives

in the gig economy, which is a concern of algorithmic management as platform-based work

becomes increasingly prevalent.

Moreover, our study also contributes to the literature on ride-hailing platforms (e.g. Chen

et al. 2019; Rosaia 2024; Ghili et al. 2025; Chen et al. 2020; Shin et al. 2023). Previous works have

mainly focused on pricing mechanisms and their impact on consumer satisfaction (Xu et al.,
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2024), driver earnings (Garg and Nazerzadeh, 2022), and social welfare (Castillo, 2023; Buch-

holz et al., 2020). Other research also explores various platform interventions on ride-hailing

platforms. Wang et al. (2019) investigate how the ride-hailing technology affects drivers’ be-

haviors and incomes. Liu et al. (2023) shows how platforms leverage the recommendation al-

gorithm to guide drivers’ location choices. Xie and Zhu (2023) study platform leakage, where

buyers and sellers bypass platforms to avoid commission fees, and discusses platform strate-

gies to mitigate such disintermediation behavior. Athey et al. (2024) find that platforms can

enhance drivers’ service quality by providing feedback on their past performance. Castillo

et al. (2025) also examine the inefficiencies under a shortage of supply in ride-hailing and pro-

pose surge pricing and matching rule adjustments as solutions to improve overall platform

efficiency. Our study extends this literature by considering the allocation algorithm as another

critical lever for platform management. We show how such allocation algorithms mediate the

matching process between two sides and influence drivers’ earnings as well as overall platform

profitability.

Related to our work, Chen et al. (2024) explore how the centralized assignment algorithm

on ride-hailing platforms rewards workers who drive for a longer time and empirically quan-

tify its welfare implications, which aims to deal with the imbalance between demand and

supply across time. In contrast, our study focuses on the allocation algorithm that aims to im-

prove match quality by prioritizing drivers who can provide better service, investigates how

it intervenes in the decentralized matching process between demand and supply, and explores

its optimal design for the platform.

More broadly, this paper is relevant to the growing literature on the market impact of

algorithms, such as pricing algorithms (Calvano et al., 2020; Assad et al., 2024; Hansen et al.,

2021), search algorithms (Yoganarasimhan, 2020; Zhou et al., 2024; Yang et al., 2024), and prod-

uct recommendation algorithms (Chen and Tsai, 2024; Donnelly et al., 2024; Wang et al., 2025;

Sun et al., 2024; Wan et al., 2024). Our work extends this broad literature by focusing on al-

location algorithms, which directly control how demand is distributed among suppliers and

thereby influence the matching process in two-sided markets. This further links our works

to recent literature on the algorithmic design by platforms (Johnson et al., 2023; Zeng et al.,

2024; Calvano et al., 2025). Similarly, our work models the platform’s allocation strategy with

endogenous labor supply and explores its optimal design.

The remainder of this paper is structured as follows. Section 2 describes the institutional
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background and the data. Section 3 presents the reduced-form empirical analysis. Section 4

outlines the structural model. Section 5 provides the estimation procedure and results, and

Section 6 presents counterfactual simulations. Section 7 concludes.

2 Institutional Background and Data

2.1 Empirical Setting

Our empirical context is one of the leading on-demand cargo platforms in China, which

matches shippers (demand) and drivers (supply) to fulfill delivery requests from pre-specified

origins to destinations. The platform operates in more than 400 cities nationwide and facilitates

over one million transactions per day, connecting more than 14 million active customers with

1 million active drivers by 2025.

This large scale makes the platform an ideal setting to study the impacts of prioritization

allocation algorithms. Figure 1 illustrates the transaction workflow on the platform. An or-

der begins when a shipper requests a logistics service on the platform by specifying the origin

and destination. The price is set by the platform based on distance and the requested vehicle

type. The request is then broadcast to nearby active drivers, who may apply for it. If multiple

drivers apply, the platform’s allocation algorithm assigns the job to one driver based on their

attributes and distance to the pickup location. If only one driver applies, that driver automati-

cally receives the shipping order. After assignment, the shipper observes the matched driver’s

attributes (e.g., ratings, number of completed orders, vehicle type; see Figure 10 in Appendix

for an example). The shipper then decides whether to accept or cancel the match without

penalty. If accepted, the platform earns commission fees after the delivery is completed.

Demand Arrival Drivers Application Stage Algorithmic Allocation Shipper Acceptance

Platform broadcasts

a shipping request to

nearby drivers

Drivers apply for the

shipping request

Platform matches one of

applying drivers to the

shipping requests

The shipper decides whether

to accept the matched driver,

after observing the driver’s

attributes

Figure 1: Work Flow on the Platform

The platform specializes in urban and short-haul freight, covering a wide variety of cargo

types and service requirements. This heterogeneity creates complexity in matching demand
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with drivers. A persistent challenge is post-match shipper cancellation, which averaged nearly

10% during our study period on the platform. Such cancellations lead to significant economic

costs by wasting matching capacity and reducing platform revenues.
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Figure 2: Relationships between Shipper Acceptance Rate and Driver Attributes

Figure 2 shows the relationships between shipper acceptance rate (i.e., 1 - cancellation

rate) and driver’s ratings as well as platform-generated behavioral scores, highlighting that

shippers are more likely to accept drivers with stronger attributes and underscoring the plat-

form’s incentive to allocate more orders to such drivers. These empirical patterns motivate the

platform’s adoption of an allocation algorithm that prioritizes high-score drivers, as they are

more likely to be accepted by shippers. We describe the design of this algorithm in the next

subsection.

2.2 Allocation Algorithm on the Platform

When multiple drivers apply for a shipping request, the platform’s allocation algorithm

determines which driver receives the job. Although the exact allocation rule remains propri-

etary, we infer its structure by training a machine learning model on historical matching out-

comes. Specifically, we employ a LightGBM model with a learning-to-rank framework, which

is well-suited for scenarios where the goal is to identify the most preferred candidate among

a set of options. The model is trained to predict which driver wins a given order based on

standardized attributes such as rating, on-time rate, tenure, rejection rate, and distance to the

shipper.1

1Because only one driver is selected per shipping request, we optimize the model with NDCG@1, which is a
ranking metric that emphasizes whether the top-ranked driver matches the actual winner. This criterion closely
aligns with the platform’s decision structure.
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This approach allows us to approximate the platform’s allocation mechanism through a

ranking rule. The resulting feature-importance scores quantify the contribution of each driver

attribute to allocation outcomes. As shown in Figure 3, the inferred mechanism suggests that

the platform systematically favors drivers with higher behavioral scores, longer tenure, higher

ratings, and a larger number of completed orders — highlighting a preference for drivers who

demonstrate both reliability and satisfactory past performance.2
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Figure 3: Importance of Driver Attributes in the Platform’s Allocation Algorithm

2.3 Data

We acquire a comprehensive transaction dataset from a major city in China with a popu-

lation of approximately 10 million. Our dataset covers the entire shipping requests placed on

the platform from 18 August to 31 August 2022.

The dataset includes both shipping request information and driver-level attributes. For

each shipping request, we observe the origin, destination, distance, whether the request was

matched with a driver, whether the shipper accepted the match, requested start time, ac-

tual completion time, price, and the corresponding payment to the driver. For each driver,

we observe experience indicators (e.g., number of completed orders, tenure on the platform),

platform-generated behavioral scores, and some additional performance metrics.

A distinctive strength of the dataset is the availability of driver application histories: for

each shipping request, we know which drivers applied, their observed attributes, and which

driver was ultimately selected. This feature not only enables us to directly document how

the allocation algorithm favors drivers with stronger quality attributes (see Figure 3), but also
2The platform also considers pickup distance when assigning orders. To isolate the role of drivers’ fixed char-

acteristics, we exclude location-based variables in Figure 3.
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allows us to construct drivers’ detailed working schedules.

Table 1 reports descriptive statistics at the shipping-request level. On average, trips span

21 kilometers, are priced at 88 RMB, and take the driver 1.1 hours to complete. Each request

attracted roughly 2.5 driver applications, and overall 88% of requests were matched with one

driver. Among matched requests, about 91% are accepted by shippers, implying a cancella-

tion rate of 9% and sizable losses of commission revenues for the platform given its scale of

operations.

Table 1: Summary Statistics (Shipping Request Level)

Statistic Mean St. Dev. Min Median Max N

Distance (km) 21.16 21.14 0.11 14.75 520.80 34,802
Price (RMB) 87.84 64.92 14.00 67.80 1,455.00 34,802
Duration (hour) 1.10 0.77 0.01 0.91 17.08 27,795
Number of Applying Drivers 2.53 2.42 0 2 20 34,802
Match 0.88 0.33 0 1 1 34,802
Acceptance 0.91 0.29 0 1 1 30,559

Table 2 summarizes the dataset at the driver level. Part I reports outcomes at the driver-

hour level, where the unit of observation is an hour in which a driver is classified as working.3

On average, during each working hour, drivers spend about 22 minutes actively transport-

ing shipments, cover roughly 7 kilometers, and earn approximately 29 RMB in gross hourly

income. Part II aggregates outcomes to the driver level over the entire sample period. On av-

erage, a driver works about 26 hours, completes roughly 10 shipping orders, drives more than

200 kilometers, and earns close to 900 RMB during the observation window. Importantly, the

variation in driver earnings highlights both the flexibility of participation on the platform and

the inequality in realized earnings across drivers.

High-Score and Low-Score Drivers

To capture each driver’s overall competitiveness in the algorithmic matching process, we

construct an aggregate priority score by taking a weighted sum of standardized driver at-

tributes, where the weights are derived from the feature-importance values of the machine

learning model described in Figure 3.

Based on this score, we classify drivers into two distinct groups. High-score (H-type)

3Following the literature, we define a driver as actively working in a given hour if he either executes or applies
for at least one shipping order that spans at least ten minutes of that hour. Details on data construction are provided
in the Appendix.
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Table 2: Summary Statistics (Driver-Level)

Part I: Driver-Hour Level

Statistic Mean St. Dev. Min Median Max N

Driving Time (minutes) 22.64 22.25 0.00 19.27 60.00 80,033
Hourly Earning (RMB) 29.63 31.54 0.00 23.95 295.00 80,033
Driving Distance (km) 7.28 8.98 0.00 4.16 74.89 80,033

Part II: Driver Level over the Entire Sample Period.

Statistic Mean St. Dev. Min Median Max N

Working Time (hours) 25.62 25.29 0.00 15 111 3,124
Number of Orders 9.78 12.09 0.00 4 93 3,124
Driving Distance (km) 211.97 252.59 0.00 106.88 1,586.04 3,124
Total Earnings (RMB) 892.46 1,010.83 0.00 460.02 5,447.13 3,124

drivers represent high-performing workers who provide consistently reliable service, often

reflected in their stronger platform records. In contrast, low-score (L-type) drivers are less

experienced and more likely to be rejected by shippers, and thus have a lower priority in the

allocation process. For the remainder of the analysis, we use the H-type and L-type to denote

these groups.

Table 3 reports the characteristics and performance of high- and low-score drivers. Several

patterns emerge. First, H-type drivers exhibit systematically stronger attributes: they hold

higher behavior scores, higher ratings, more completed orders, longer tenure, and higher on-

time rates. Second, these advantages translate into superior outcomes: over the sample period,

H-type drivers work more hours, complete more orders, travel longer distances, and earn

higher total income compared to L-type drivers. Finally, even at the driver-hour level, H-type

drivers achieve higher hourly earnings and longer driving times per working hour, suggesting

that the allocation algorithm consistently allocates more job opportunities toward them.

Together, these patterns indicate that the platform’s allocation algorithm does not dis-

tribute orders randomly, but instead systematically rewards higher-score drivers with greater

earning opportunities. This mechanism creates clear disparities in outcomes across driver

types and motivates our reduced-form analysis of how the allocation algorithm affects shipper

acceptance and driver earnings.
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Table 3: High-Score/Low-Score Driver Performances

High-Score Low-Score

Part I: Driver Characteriitics

Behavior Score 110.57 91.92
Rating 4.90 4.83
Number of Completed Order 923.46 191.82
Tenure (days) 688.45 215.21
On-time rate 94.34% 86.81%

Part I: Performance (over the Entire Sample Period)

Work Time (hours) 29.98 21.26
Number of Orders 11.53 8.03
Driving Distance (km) 251.02 172. 92
Total Earnings (RMB) 1072.04 712.88

Part II: Performance (in Driver-Hour Level)

Driving Time (minutes) 23.36 21.63
Hourly Earning (RMB) 31.31 27.26
Driving Distance (km) 7.60 6.83

Numbers of Drivers 1562 1562

3 Reduced-Form Analysis

In this section, we show the underlying mechanism behind the platform’s allocation al-

gorithms: by prioritizing high-score drivers, the platform not only improves the match quality

but also leads to differential earnings for drivers, thereby affecting drivers’ labor supply incen-

tives.

3.1 Shipper Acceptance

A central objective of the allocation algorithm is to increase the likelihood that shippers

accept their assigned drivers. To test this mechanism, we regress shipper acceptance on ob-

servable driver attributes in Table 4. Columns (1)–(2) show that drivers with higher behavioral

scores and more completed orders are significantly more likely to be accepted by shippers. In

contrast, pickup distance negatively predicts acceptance, reflecting the shippers’ preference for

drivers who can arrive quickly. Columns (3)–(4) introduce an indicator for high-score drivers,

as defined in Section 2.2. The estimates show that H-type drivers are about four percentage

points more likely to be accepted than L-type drivers, an economically meaningful difference

relative to the baseline acceptance rate of 91%.

Overall, these results demonstrate that the platform’s prioritization of high-score drivers
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is aligned with shippers’ preferences. By systematically steering shipping requests toward

drivers with stronger attributes, the platform reduces post-match cancellations and raises over-

all match efficiency.

Table 4: Shipper Acceptance as a Function of Driver Attributes

Dependent Variable: Shipper Acceptance
Model: (1) (2) (3) (4)

Behavioral Score 0.0015∗∗∗ 0.0012∗∗∗

(0.0001) (0.0001)
log(Number of Completed Order) 0.0143∗∗∗ 0.0119∗∗∗

(0.0014) (0.0014)
Rating 0.0082 0.0058

(0.0060) (0.0060)
Pickup Distance(km) -0.0080∗∗∗ -0.0086∗∗∗

(0.0004) (0.0004)
H-type 0.0443∗∗∗ 0.0330∗∗∗

(0.0033) (0.0033)
Constant 0.6307∗∗∗ 0.7192∗∗∗ 0.8834∗∗∗ 0.9226∗∗∗

(0.0302) (0.0303) (0.0026) (0.0031)

Observations 30,559 30,559 30,559 30,559
R2 0.01363 0.02709 0.00578 0.02163
Adjusted R2 0.01354 0.02696 0.00575 0.02157

Notes: Standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

3.2 Drivers’ Differential Hourly Earning

Having established that shippers are more likely to accept high-score drivers, we now

examine whether these drivers also earn more than low-score ones, conditional on working

in the same hour. We regress drivers’ hourly earnings on an indicator of being H-type while

controlling for day-hour fixed effects. Columns (1)–(2) in Table 5 show that H-type drivers

earn about 4 RMB more per hour than L-type drivers, representing a 15% premium relative

to the sample average hourly income of 27 RMB. Columns (3)–(5) suggest that this advantage

arises not only from higher shipper acceptance rates but also from greater work intensity: H-

type drivers receive more assigned shipping requests, spend 1.7 more minutes per working

hour actively transporting shipments, and drive about 0.7 more kilometers.

Taken together, these findings underscore that the platform’s allocation algorithm system-

atically channels more job opportunities to H-type drivers. While this design improves overall

match efficiency, it also amplifies earnings disparities between high- and low-score drivers and

further shapes their labor supply incentives: it may encourage H-type drivers to remain highly
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engaged but discourages participation from L-type drivers who face fewer opportunities.

Table 5: Drivers’ Differential Hourly Earnings

Dependent Variables: Hourly Earning # Assigned Order Working Time Distance
Model: (1) (2) (3) (4) (5)

H-type 4.053∗∗∗ 3.956∗∗∗ 0.0217∗∗∗ 1.716∗∗∗ 0.7261∗∗∗

(0.2258) (0.2722) (0.0044) (0.2020) (0.0729)
Constant 27.26∗∗∗

(0.1727)

Day-Hour FE Yes Yes Yes Yes

Observations 80,033 80,033 80,033 80,033 80,033
R2 0.00401 0.02270 0.03017 0.02150 0.01523
Within R2 0.00387 0.00045 0.00147 0.00160

Notes: Standard errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

4 The Model

The allocation algorithm in the platform prioritizes high-score drivers based on their per-

formance attributes, thereby influencing drivers’ earnings and labor supply incentives. To

assess the welfare implications of algorithmic allocation and explore its potential optimal de-

sign for the platforms, we propose an equilibrium model of the market. Our model consists

of three components: the demand system, the drivers’ labor supply, and a matching model

of algorithmic allocation. First, the demand system describes shippers’ aggregate demand for

driver working hours as a function of the price of delivery service. Second, on the supply side,

drivers endogenously decide whether and when to work by comparing the expected earnings

and their reservation values. Third, an aggregate matching function incorporates the algo-

rithm’s prioritization of high-score versus low-score drivers and maps supply and demand

into matching probabilities, which further affects drivers’ expected earnings and their labor

supply decision. Importantly, the algorithmic allocation rule distinguishes between two types

of drivers: high-score drivers and low-score drivers, with each driver’s type exogenously fixed

during our data periods.

4.1 Demand Side

We model the decision of market participants for each hour t in the day d. We omit the

day index d for simplicity. Shippers only demand and pay for the drivers’ working hours. At
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hour t of the day, the aggregate demand for working hours is denoted Nt(Pt), where Pt is the

hourly serving rate set by the platform. We consider a downward-sloping and constant-elastic

demand curve4

Nt(Pt) = exp (δt) · P η
t ,

where η is the constant demand elasticity, and δt is a demand shifter that captures time-varying

factors that may influence demand at hour t, such as traffic conditions and time of day.

4.2 Supply Side

Each driver j belongs to either H-type or L-type (i.e., high-score and low-score), denoted

by k(j) ∈ {H,L}, which is exogenously fixed and observable. At the beginning of hour t, the

driver j’s expected utilities of working on the platform and not working are given by:

Ujt(1) = Wj(t) + σ · ϵjt(1) (1)

Ujt(0) = Rj(t) + σ · ϵjt(0) (2)

where Wj(t) is the expected hourly earnings, Rj(t) is driver-specific heterogeneous reserva-

tion value from working on something else, and ϵjt represents the error term and follows the

Type-I extreme value distribution. Notice that even with identical expected earnings, hetero-

geneity in drivers’ reservation values can lead to different working schedules. To account for

this unobserved heterogeneity, we allow each driver j to belong to one of the latent groups,

denoted by g(j) ∈ {1, . . . , G}, such that

Rj(t) = Rg(j)(t),

where Rg(j)(t) represents group-specific reservation values that capture variation in prefer-

ences for working at different times of the day. Essentially, our model features two dimensions

of heterogeneity on the supply side: (1) the observed type k(j), which determines driver j’s

priority in the platform’s allocation algorithm; and (2) the unobserved group g(j), which cap-

tures drivers’ heterogeneous outside options.

The labor supply decision of the driver j is denoted by ajt ∈ {0, 1}, with ajt = 1 indicating

4Due to data limitation, we do not explicitly model the shipper choice problem among modes of delivery or
whether to ship. Following Frechette et al. (2019) and Buchholz (2022), we use a demand function to relate the
number of working hours to price.
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working at hour t. Drivers form rational expectations about their hourly earnings through their

repeated interactions on the platform. The driver j will choose to work at hour t if and only

if Ujt(1) ≥ Ujt(0). Therefore, aggregating across individuals, the labor supply for each type of

driver is:

MH(t) =
∑

k(j)=H

Pr (Ujt(1) ≥ Ujt(0)) and ML(t) =
∑

k(j)=L

Pr (Ujt(1) ≥ Ujt(0)) , (3)

where Mk(t) is the expected number of active driver of type k ∈ {H,L} at hour t. These type-

specific labor supplies will feed into the platform’s matching algorithm, which determines

how demand is allocated across driver types and ultimately shapes their realized earnings.

4.3 A Matching Model with Algorithmic Allocation

Having characterized the demand system and drivers’ labor supply decisions, we now

embed them in a matching model that determines how supply and demand interact under

the platform’s algorithmic allocation rule. The matching model parsimoniously captures both

match friction and the priority given to different driver types in the allocation algorithm.

Specifically, we consider active drivers to make individual application decisions, and the allo-

cation algorithm plays a role only when multiple drivers apply for one shipping demand.

First, we drive the total number of matches (before shipper acceptance) in the market,

which depends only on the number of active drivers and shipping requests, regardless of how

the platform ultimately assigns requests across applicants. Following previous literature (e.g.

Burdett et al. 2001; Buchholz 2022; Frechette et al. 2019), we consider an urn-ball matching

process in which each driver randomly and independently applies for one shipping request

at the beginning of hour t. Given Nt units of demand, and Mt = MH(t) +ML(t) drivers, the

probability that a unit of demand receives at least one driver’s application is 1− (1− 1/Nt)
Mt .

Thus, the expected number of total matches is Nt ·
(
1− (1− 1/Nt)

Mt

)
≃ Nt ·(1−e

−Mt
Nt ). To cap-

ture heterogeneity in transportation conditions and coordination frictions across markets, we

introduce a market-specific parameter γt, which scales the efficiency of the matching process.

Therefore, the expected total number of matches becomes

F (Mt, Nt) = Nt · (1− e
− Mt

γt·Nt ),
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where a higher value of γt decreases the amount of match. This function allows matching fric-

tion due to coordination failures, such that some shipping requests may receive no application,

and some may have multiple drivers applying.

Next, we incorporate the platform’s algorithmic allocation rule and derive the type-k

driver’s probability of getting a shipping request for k ∈ {H,L}. Conditional on multiple ap-

plications for the same shipping demand, the platform prioritizes high-score drivers: if these

drivers are of the same type, they have an equal probability of getting the demand; if they

differ in types, the platform allocates the shipping request to H-type drivers with probability

s, and to L-type drivers with probability 1 − s. This leads to a type-k driver’s probability of

getting a shipping request, denoted by ϕk(s) for k ∈ {H,L}.5 As such, we must have:

MH(t) · ϕH(s) +ML(t) · ϕL(s) = F (Mt, Nt)

which clearly states that given Nt and Mt, the platform’s algorithm only affects the distribution

across driver types, but not the total number of matches. Moreover, as s rises from zero to one,

ϕH(s) increases and ϕL(s) decreases, reflecting the dynamic of algorithmic priority to different

types of drivers.

After matching with a shipping request, the driver j’s performance metrics are displayed

to the shipper, who may accept or reject the driver. We model shipper acceptance as a function

of driver attributes, denoted by λj , estimated empirically by Column (1) in Table 4. Combin-

ing the probability of being allocated a shipping request with the acceptance probability by

shippers yields the expected hourly earnings for a type-k driver j at hour t:

Wj(t) = (1− r) · Pt · ϕk(j)(s) · λj , (4)

where r is the commission rate, with a 1 − r fraction of the shipping fare obtained by the

driver.6 By choosing s, the platform effectively controls how shipping demand is allocated

among drivers and thereby influences drivers’ expected earnings and labor supply incentives.

Finally, the platform’s expected profit under the design of allocation algorithm s is

r ·
∑
t

Pt ·

∑
j

Pr (Ujt(1) ≥ Ujt(0)) · ϕk(j)(s) · λj

 ,

5We provide detailed steps to derive these two matching probabilities in Appendix.
6In our empirical analysis, we set the commission rate r at 8%.
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where Ujt(1) and Ujt(0) are given by Equations (1) and (2), ϕk(j)(s) is a function of Nt, MH(t)

and ML(t), where MH(t) and ML(t) follow from Equation (3).

5 Estimation

5.1 Demand Estimation

We begin by estimating shipper demand for delivery services at the hourly level. Each

hour t is treated as a market, and data is aggregated to the day-hour level. Based on the

logarithm of service hour demanded by shippers Ndt and the logarithm of hourly service price

Pdt, we estimate demand elasticity η from the following log-linear demand specification:

logNdt = log δdt − η logPdt.

Because the platform may raise prices in response to positive demand shocks, log(Pdt)

can be endogenous. We therefore use the price in a nearby city within the same province as an

instrumental variable. The instrument exploits cross-city supply substitution: a higher price

in the city B draws mobile drivers toward city B, reducing effective supply in our focal city

A and increasing city A’s equilibrium price. Crucially, shippers are locally tied, so prices in

city B should not directly affect demand in city A. Day and hour fixed effects absorb common

temporal shocks (e.g., weather fronts, regional events), so identification comes from residual

cross-city price movements plausibly driven by supply reallocation.

Table 6 reports the results. Column (1) shows the baseline regression without fixed effects,

suggesting the possibility of endogeneity. Columns (2) and (3) include day and hour fixed

effects to account for temporal demand fluctuations. Once we control for both dimensions of

time, the estimated elasticity in Column (3) is -0.90, indicating that a 1% increase in the hourly

shipping price reduces total service hours demanded by approximately 0.9%. Column (4)

reports the IV estimate using the nearby-city price as the instrument: the elasticity increases in

magnitude to -1.32 and remains statistically significant at the 5% level, consistent with upward

price endogeneity in OLS. We take this estimate in the counterfactual analysis.
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Table 6: Demand Estimation

Dependent Variable: ln(Service Hours)
Model: (1) (2) (3) (4)

OLS OLS OLS IV

ln(Price) 2.195∗∗∗ -0.9806∗∗ -0.9005∗∗ -1.3224∗∗

(0.4366) (0.4246) (0.4226) (0.6050)
rain 0.8418 -0.1633∗∗ -0.2794∗ -0.2906∗

(0.6627) (0.0747) (0.1471) (0.1699)
Constant -5.044∗∗∗

(1.876)

Hour FE Yes Yes Yes
Day FE Yes Yes

Observations 192 192 192 192
R2 0.12838 0.96127 0.96640 0.96408
Within R2 0.27629 0.24810 0.19618

Notes: Standard errors are in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

5.2 Estimation of Supply Side Parameters

This subsection outlines the estimation procedure and results of the supply side model.

We first derive the likelihood function and then describe the maximum likelihood approach,

implemented via the Expectation-Maximization (EM) algorithm, to estimate model parame-

ters. Finally, we present and interpret the estimation results.

5.2.1 The Likelihood Function

For a driver j, conditional on belonging to latent group g, we observe a sequence of work-

ing decisions ajt across hour t. Let Θg = [Rg
0, . . . , R

g
23] denote the 24-dimension vector of

reservation value for group g drivers.

To construct the expected matched earnings Wj(t) faced by drivers, we exploit within-

hour variation across driver types. Specifically, for each hour h, we compute the average

matched demand separately for H-type and L-type drivers. These averages serve as empir-

ical approximations to drivers’ type-specific expected matched demand, as denoted ϕk for

k ∈ {H,L} in Equation (4). Multiplying these expectations by the average hourly price yields

the expected earnings Wj(t) for each driver j. Essentially, we assume drivers form rational

expectations and base their labor supply decisions on the empirical matching probabilities ob-

served for their type.

Therefore, at each hour t, the conditional choice probabilities of the driver j working and
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not working are given by

Pr(ajt = 1|g(j) = g) =
exp(Wj(t)/σ)

exp(Wj(t)/σ) + exp(Rg(t)/σ)
,

Pr(ajt = 0|g(j) = g) =
exp(Rg(t)/σ)

exp(Wj(t)/σ) + exp(Rg(t)/σ)
.

Therefore, the likelihood of a driver j’s working history, conditional on group g is

Lj|g(Θg) =
∏
t

Pr (ajt = 1|g(j) = g)ajt × Pr (ajt = 0|g(j) = g)1−ajt .

Since each driver may belong to one of the latent groups, the total log likelihood function

should marginalize over the distribution of the latent groups as follows

L(Θ) =

J∑
j=1

log

 G∑
g=1

πg · Lj|g(Θg)

 ,

where Θ ≡ {Θg} for g ∈ {1, . . . , G} groups.

5.2.2 Estimation Methods

We use the Expectation-Maximization (EM) algorithm to estimate Θ and latent group dis-

tribution πg, which is well-suited for maximum likelihood estimation in models with unob-

served latent variables. The EM algorithm alternates between the Expectation (E) step and

the Maximization (M) step. In the E-step, the latent group probabilities πg are updated given

current parameter values Θ. In the M-step, the group-specific parameters Θ are optimized

to maximize the log-likelihood, treating the latent group probabilities πg as fixed. Those two

steps are iteratively repeated until convergence.

To determine the number of latent groups G, we estimate models with different G and

compare their Bayesian Information Criterion (BIC). BIC decreases substantially as G rises

from one to four, but only marginally beyond four (with relative decreases of 15.8%, 7.1%,

2.0%, 1.1%, 1.1%, and 0.6%), as shown in Figure 9 in Appendix. We therefore select G = 4

groups in the following analysis.
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5.2.3 Estimation Results

Table 7 reports the model estimation results. The group proportions in the first row in-

dicate that the driver population is dominated by Group 4 (43%), followed by Group 2 (27%)

and Group 3 (21%), while Group 1 constitutes only 10%. The results further highlight substan-

tial heterogeneity in drivers’ reservation values and quality composition. First, the average

reservation values vary across groups, ranging from 31.07 (Group 1) to 40.52 (Group 3). No-

tably, groups 3 and 4, who make up nearly two-thirds of the population, exhibit relatively high

outside options.

Second, the fraction of H-type drivers differs across groups. In Groups 3 and 4, over half

of drivers are high-score (52.76% and 53.86%), whereas in Group 1, only about one-quarter

(27.04%) fall into the H-type category. This pattern suggests that high-score drivers tend to be

concentrated in the groups with higher reservation values.

Table 7: Model Estimation Results for Unobserved Driver Heterogeneity

Group 1 Group 2 Group 3 Group 4

Group Proportion πg 0.10 0.27 0.21 0.43
Average Reservation Value 31.07 34.99 40.52 38.56
Fraction of H-type 27.04% 50.12% 52.76% 53.86 %

Third, Figure 4 further depicts the estimated reservation values across latent groups. A

common U-shaped pattern emerges: reservation values are lowest during the morning and

midday (7 am–12 pm) and peak in the late night to early morning (1 am–4 am). This is con-

sistent with industry practices, as delivery opportunities are relatively scarce overnight and

drivers face higher opportunity costs. The magnitude of this variation, however, differs by

group. In particular, Group 3 drivers show especially low reservation values during daytime

hours but experience a sharp increase at night, reflecting their comparative advantage as day-

time workers.

Overall, the estimation results reveal meaningful heterogeneity in both outside options

and working schedules. Some groups (e.g., Group 1) are more willing to work consistently

at lower reservation values, while others (e.g., Group 3) display strong temporal variation,

being highly active during the day but requiring higher compensation at night. These differ-

ences are crucial for understanding platform supply dynamics and for evaluating the impact

of counterfactual policies on heterogeneous driver populations.
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Figure 4: Estimated Reservation Values

5.3 Calibration of Matching Friction

We calibrate the hourly matching friction parameter γt, which measures the efficiency of

the driver–shipper allocation process. A higher γt reflects greater frictions (less efficient match-

ing), while a lower γt indicates smoother matching. Figure 5 plots the estimated frictions over

the hour of the day, where the dotted line represents the mean friction at hour t, and the shaded

area shows the 95% confidence interval. The pattern reveals strong temporal variation, with

frictions peaking during early-morning and midday hours when traffic congestion reduces the

platform’s ability to match drivers with shippers effectively.
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Figure 5: Estimated Market Friction
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6 Counterfactual Simulation

6.1 Welfare Implications of Current Algorithm

We begin by evaluating the welfare consequences of the platform’s current allocation rule,

which prioritizes high-score drivers. As a counterfactual benchmark, we simulate a market in

which the algorithm is removed and orders are randomly assigned among applying drivers.

In this case, each driver faces the same probability of being matched, given by

ϕ =
F (Mt, Nt)

Mt
,

where F (Mt, Nt) is the total number of matches given active supply Mt and shipping demand

Nt. Then, a driver j’s expected hourly earnings become

Wj(t) = (1− r) · Pt · ϕ · λj ,

with r is the commission rate and λj is the shipper acceptance probability conditional on as-

signment. Given these new hourly earnings, drivers adjust their hourly labor supply decisions.

Figure 6 depicts how driver supply responds to the removal of the algorithm. H-type

drivers reduce their labor supply substantially, especially during peak hours, while L-type

drivers expand their participation, highlighting that algorithmic prioritization shifts participa-

tion toward H-type drivers. Figure 11 in the Appendix presents absolute supply under the

two regimes, showing that the net changes in Figure 6 are driven by reduced participation of

H-type drivers and expanded participation of L-type drivers during peak hours.

Quantitatively, we find that removing the allocation algorithm reduces overall platform

commission revenues 3.51% and redistributes H-type and L-type drivers’ surplus. Specifically,

H-type drivers’ total surplus falls by about 2.37%. By contrast, L-type drivers gain access to

more orders and experience a modest surplus increase of around 2%. 7 These findings under-

score the central tradeoff: prioritization toward high-score drivers raises shipper satisfaction

and sustains shipper welfare, but redistributes opportunities away from lower-score drivers

and reduces their surplus.

7On the consumer side, consumer surplus from completed orders is CS =
∑

t exp(δt)
∫∞
Pt

x−ηdx =∑
t

1
η−1

exp(δt) · P 1−η
t = 1

(η−1)·r × Platform Commission. This expression shows that shipper surplus is tightly
linked to the platform’s commission revenues, scaled by the demand elasticity.
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Figure 6: Change in Driver Supply When Removing the Current Allocation Algorithm
Notes: The figure plots the average hourly change in driver supply relative to the baseline with the
platform’s current allocation algorithm. Positive values indicate higher supply under random alloca-
tion, while negative values indicate lower supply. Supply changes are averaged across all days in the
sample period.

6.2 Optimal Algorithm Design for the Platform

Having established the welfare implications of the current allocation rule relative to ran-

dom assignment, we now turn to the question of optimal algorithm design. Recall that the

allocation parameter s ∈ (0, 1) governs the probability that an order contested by both types

of drivers is assigned to the H-type. At one extreme, s = 0 corresponds to full prioritization of

L-types, while s = 1 corresponds to full prioritization of H-types.

Figure 7 shows how platform commission revenues vary with s. The relationship is

hump-shaped: revenues initially rise as the platform increases s, reflecting greater shipper

acceptance and lower cancellations when H-type drivers are more prioritized. However, be-

yond an intermediate point, further prioritization of H-type drivers reduces revenues. This

decline arises because excess concentration of orders among H-type drivers discourages par-

ticipation by L-types, lowering total effective supply. The platform’s commission is maximized

at s = 0.65, which is highlighted by the blue point.
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To unpack the underlying mechanism, Figure 8 examines supply responses by driver type

and total supply. Panel (a) shows that as s increases, H-type drivers’ labor supply expands

monotonically, while L-type supply contracts. Panel (b) aggregates across types and reveals

that total supply is also hump-shaped in s: moderate prioritization stimulates participation

from H-type drivers without deterring too many L-type drivers, but excessive prioritization

discourages L-type participation too much to reduce overall supply.
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Figure 8: Effect of s Driver Supply

Taken together, these results suggest that the platform should balance two competing

forces: (i) improved shipper acceptance from prioritizing H-type drivers, who deliver better

service and thus reduce shipper cancellation, and (ii) labor supply losses from discouraging

L-type drivers when their priority is reduced. The optimal allocation rule instead carefully

balances incentives on both sides of the market, ensuring that enough drivers of both types

remain engaged to sustain high-quality matches at scale.
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7 Conclusion

Gig platforms increasingly match demand to supply via allocation algorithms that favor

workers who are providing high-quality services. This paper examines the welfare effects

of such prioritization allocation rules in a two-sided platform and provides implications for

the design of allocation algorithms for platforms. First, we show that prioritizing high-score

drivers raises customer acceptance and improves match quality, but shifts opportunities away

from lower-score or newer drivers, creating earnings disparities. Second, we develop a struc-

tural model that nests quality-based prioritization in a frictional matching environment with

endogenous labor supply. The counterfactual simulation delivers implications for the design

of allocation algorithms: while directing more demand to high-score drivers lifts shipper satis-

faction and match quality, it can discourage participation by less-experienced and lower-score

drivers, thereby shrinking total effective supply and ultimately backfiring by reducing plat-

form profitability.

Naturally, our study has limitations. The data span a short horizon, so long-run dynam-

ics—such as driver learning and quality upgrading by currently low-score drivers—remain

open questions. Furthermore, future research may explore how allocation rules interact with

other levers such as pricing, bonus incentives. Overall, our results suggest that allocation algo-

rithms are not merely neutral operational tools but active market-shaping instruments. Their

design determines not only match quality but also who participates, who benefits, and ulti-

mately whether the platform can sustain efficiency and growth.
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Appendix

A Data Sample Construction

This appendix details the procedure for constructing the driver-hour dataset from the

raw order-level transaction data and driver application history. First, we acquire the sample

of orders with both origin and destination within the city boundary and retain all drivers who

applied for these shipping orders. Second, consistent with prior literature (e.g., Chen et al.,

2019), we define a driver as actively working in a given hour t if he either executes or applies

for at least one shipping order that spans at least ten minutes of that hour. This definition

accounts for both realized work and effort spent searching or applying for jobs, thereby cap-

turing drivers’ active labor supply decisions more comprehensively. Third, following Chen

et al. (2024), we partition shipping orders across hours. Specifically, if an order spans x hours,

we divide it into x sub-orders, each corresponding to a single hour. The service price and driv-

ing distance associated with the order are proportionally allocated across these hours. Finally,

after aligning all orders and applications to the hourly level, we aggregate information to con-

struct the driver-hour panel. For each driver and hour, we compute total earnings, the number

of completed orders, and total driving distance. This aggregation yields the core dataset used

in our estimation and counterfactual analysis.

B Derivation of Matching Probabilities

Consider a market with MH(t) high-score drivers (H-type), ML(t) low-score drivers (L-

type), and Nt units of demand. For a particular H-type driver to be matched with a demand,

one H-type driver must be chosen and the particular driver in discussion must be the chosen

one. The platform allocates a demand to a H-type driver either (i) when no L-type driver

has applied to the demand, or (ii) when one or more L-type drivers have applied but the

platform favors a H-type driver. Note that F (NL(t), Nt) is the expected number of demand re-

ceiving L-type drivers’ application, any demand will receives L-type drivers’ application with

probability F (NL(t),Nt)
Nt

due to randomness. Therefore, the first case occurs with probability

1− F (NL(t),Nt)
Nt

= e
−ML(t)

γt·Nt , and the second case happens with probability s ·
(
1− e

−ML(t)

γt·Nt

)
.

Conditional on allocating the demand to one H-type driver, the particular one in dis-

cussion will obtain the demand with probability F (MH(t),Nt)
MH(t) . Put together, a H-type driver’s
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probability of being matched with a demand is

ϕH(s) =

{
e
−ML(t)

γt·Nt + s ·
(
1− e

−ML(t)

γt·Nt

)}
Nt

MH(t)
·
(
1− e

−MH (t)

γtNt

)
.

Analogously, the matching probability for the L-type drivers is

ϕL(s) =

{
e
−MH (t)

γt·Nt + (1− s) ·
(
1− e

−MH (t)

γt·Nt

)}
Nt

ML(t)
·
(
1− e

−ML(t)

γtNt

)
.
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Figure 10: Driver Information Displayed to Shippers
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E Driver Supply Under Current Algorithm vs. Random Allocation

Figure 11 plots the average hourly supply of H-type and L-type drivers under two regimes.

Panel (a) shows supply when orders are randomly allocated among applicants (no priority

rule), while Panel (b) shows supply under the platform’s current allocation algorithm. Supply

levels are averaged across all days in the sample period. The comparison highlights that algo-

rithmic prioritization increases H-type participation during peak hours while reducing L-type

participation.
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Figure 11: Driver Supply under Current Algorithm vs. Random Allocation

Notes: Panel (a) shows supply when orders are randomly allocated among applicants (no priority rule),
while Panel (b) shows supply under the platform’s current allocation algorithm. The comparison high-
lights that algorithmic prioritization increases H-type participation during peak hours while reducing
L-type participation.
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